

Simple-Tau II Table-Top TCSPC Systems

Time-Correlated Single Photon Counting Systems with Thunderbolt Interface

Based on bh's Multidimensional TCSPC Technique

Compact TCSPC systems, coupled to

Coupled to Laptop computer via Thunderbolt interface

One or two SPC-160pcie TCSPC modules

One DCC-100pcie detector controller

One GVD-120pcie scan controller

Time channel width down to 813 fs

Electronic IRF (Jitter) 6.6 ps FWHM, 2.5 ps rms

Excellent timing stability

High count rate

Photon distribution and parameter-tag modes

Standard fluorescence decay recording

Fast triggered sequential recording

FLIM by bh's multidimensional TCSPC process

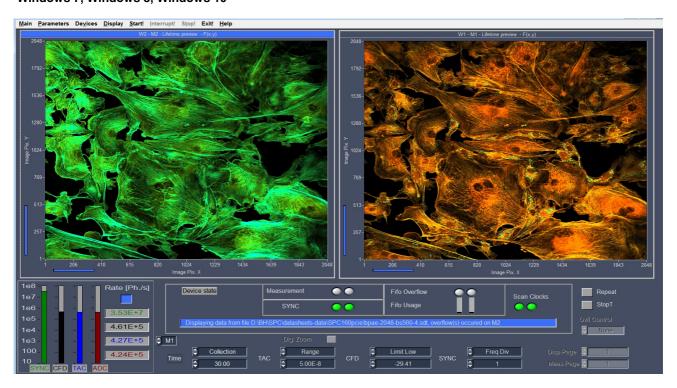
Megapixel FLIM Technology

Simultaneous FLIM / PLIM

Multi-spectral FLIM

Mosaic FLIM, Z-stack FLIM, time-series FLIM

Ultra-fast time series FLIM by triggered accumulation


FLITS

FCS, FCCS, single-molecule spectroscopy

64-bit operating software

Windows 7, Windows 8, Windows 10

International Sales Representatives:

Becker & Hickl GmbH Technology Leader in TCSPC

Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax. +49 / 30 / 787 57 34 email: info@becker-hickl.com

www.becker-hickl.com

Boston Electronics

US: Boston Electronics Corp tcspc@boselec.com www.boselec.com

UK: Photonic Solutions PLC sales@psplc.com www.psplc.com

Japan: **Tokyo Instruments Inc.** sales@tokyoinst.co. jp www.tokyoinst.co.jp China: **DynaSense Photonics Co. Ltd.** info@dyna-sense.com www.dyna-sense.com

Simple-Tau II Table-Top TCSPC Systems

Photon Channel

Time Resolution (FWHM / RMS_electr.)

Opt. Input Voltage Range Min. Input Pulse Width

Zero Cross Adjust

Synchronisation Channel

Principle

Opt. Input Voltage Range Min. Input Pulse Width

Threshold Frequency Range

Frequency Divider Zero Cross Adjust

Time-to-Amplitude Converters / ADCs

Principle

TAC Range Biased Amplifier Gain

Biased Amplifier Offset Time Range incl. Biased Amplifier min. Time / Channel

ADC Principle Diff. Nonlinearity

Data Acquisition (Histogram Mode)

Method

Dead Time

Saturated count rate / count rate at 50% loss

Number of Time Channels / Pixel Image Resolution (pixels), 1 Detector Channel

max. Counts / Time Channel Overflow Control

Collection Time Display Interval Time

Repeat Time Sequential Recording

Synchronisation with scanning

Curve Control (external Routing)

Count Enable Control

Experiment Trigger

Data Acquisition (FIFO / Parameter-Tag Mode)

Online Display

Waveform recording FCS calculation

Image Acquisition in parameter-tag mode Image resolution, 64-bit SPCM software

No of time channels No. of pixels, 1 detector channel

No. of pixels, 16 detector channels

Output Data Format (ADC / Macrotime / Routing)

Output Data Format (ADC / Macrotime / Routing FIFO buffer Capacity (photons)
Macro Timer Resolution, internal clock
Macro Timer Resolution, clock from SYNC input Curve Control (external Routing)

External event markers Count Enable Control

Experiment Trigger

Detector control

Number of independently controlled detectors Resolution of gain control

Voltage Range Pin 12 of connector 1 and 3 Voltage Range Pin 13 of connector 1 and 3

Output Time Constant Detector overload shutdown

Reset of overload shutdown

Shutter control

Max. Switch Current, Single Switch Max. turn-off Voltage at Switches

Control of thermoelectric coolers

Scanner control (optional)

Operation of fast galvanometer scanner Operation of piezo scan stages

X-Y output voltages Control of two bh ps diode lasers

Laser multiplexing control

Image size Pixel time fo

Constant Fraction Discriminator (CFD) 6.6 ps / 2.5 ps - 30 mV to - 1 V 400 ps 0 to - 500 mV - 100 mV to + 100 mV

IRF stability

over 50 s

0.5s per

recording

10 ps

FWHM 6.6 ps

IRF maximum time 0.8 ps

4096

Constant Fraction Discriminator (CFD)

- 30 mV to - 1 V 400 ps

0 to -500 mV 0 to 150 MHz

-100 mV to + 100 mV

Ramp Generator / Biased Amplifier

50 ns to 5 us 1 to 15

0 to 100% of TAC Range

3.3 ns to 5 us 813 fs

50 ns Flash ADC with Error Correction < 0.5% rms, typ. <1% peak-peak

on-board multi-dimensional histogramming process

80ns, independent of computer speed 10 MHz / 5 MHz

256 128 x 128

1024

16 2048 x 2048 1024 x 1024 256 x 256

512 x 512 2¹⁶-1

none / stop / repeat and correct 0.1 us to 100,000 s 0.1 us to 100,000 s 0.1 us to 100 000 s

Programmable Hardware Sequencer, Unlimited recording by memory swapping, in curve mode and scan mode

pixel, line and frame clocks from scanning microscope

1 bit TTL

Time-tagging of individual photons and continuous writing to disk Decay function, FCS, Cross-FCS, PCH, MCS traces, images

online from time-tag data, up to 16 detector channels Multi-tau algorithm, online calculation and online fit

recording of pixel, line and frame pulses, online build-up of images by software

256 1024 4096 x 4096 1024 x 1024 512 x 512 256 x 256 128 x 128

80 ns 12/12/4

2 M

25 ns, 12 bit, overflows marked by MTOF entry in data stream

10ns to 100ns, 12 bit, , overflows marked by MTOF entry in data stream 4 bit TTL

4 bit, TTL 1 bit TTL

one or two 12 bit

0 to +10 V 0 to +0.9 V

100 ms via TTL signal from detector module or preamplifier

By software and at power-on 8 independent high-current switches

2 A 20 V

for one or two detectors

+/- 2.5V. differential signals

within one pixel, line by line, or frame by frame

	16 x16 pixe	els to 4096 x 4096 pixe	els	
Image Size	Zoom = 1	Zoom = 2	Zoom = 4	Zoom = 8
128 x128	12.8 µs	6.4 µs	4.8 µs	3.2 µs
256 x 256	6.4 µs	3.2 µs	2.4 µs	1.6 µs
512 x 512	3.2 µs	1.6 µs	1.2 µs	0.8 µs
1024 x 1024	1.6 µs	1.2 µs	0.8 µs	0.6 µs
2048 x 2048	0.8 µs	0.6 µs		

Related Literature

W. Becker, Advanced time-correlated single photon counting techniques. Springer 2005. Please contact bh for availability.
 W. Becker, The bh TCSPC Handbook, 6th edition. Available on www.becker-hickl.com, please contact bh for printed copies
 W. Becker (ed.), Advanced time-correlated single photon counting applications. Springer 2015. Please contact bh for availability.

Please see also www.becker-hickl.com, 'Literature', 'Application notes'

More than 20 years experience in multi-dimensional TCSPC. More than 1600 TCSPC systems worldwide.