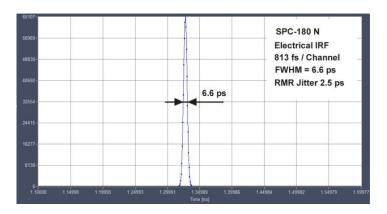
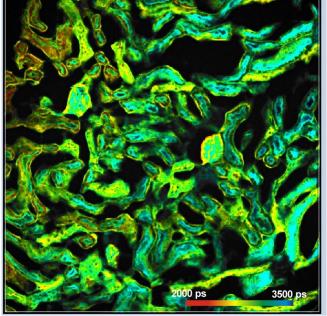
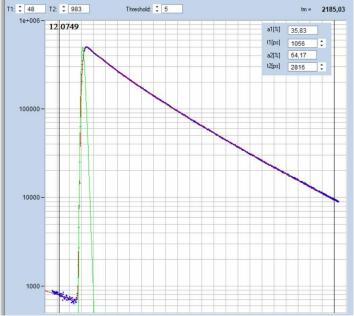


SPC-180N

TCSPC / FLIM Module


High-Resolution Time-Correlated Single Photon Counting Module


High-throughput PCI-Express interface
Ultra-fast, ultra-stable timing electronics
Electrical IRF width 6.6 ps FWHM
Internal timing jitter 2.5 ps RMS
Time-channel width down to 813 fs
Discriminator input bandwidth 4 GHz
Photon distribution and time/parameter-tag modes
Multi-detector / multi-wavelength capability
Excitation-wavelength multiplexing
Parallel operation of 2, 3 or 4 modules
Laser repetition rates up to 150 MHz
Dead time 80 ns
Saturated count rate 12.5 MHz


Fluorescence-decay experiments
Anti-bunching experiments
Single-wavelength FLIM, multi-wavelength FLIM
Fast-acquisition FLIM
Accumulated time-series FLIM
Simultaneous FLIM / PLIM
Mosaic FLIM

Metabolic imaging
Double-exponential FRET imaging
FLIM of fast physiological processes
Recording of Ca²⁺ transients
fNIRS and NIRS experiments
Single-molecule spectroscopy
Fluorescence correlation

Becker & Hickl GmbH Nunsdorfer Ring 7-9 12277 Berlin, Germany Tel. +49 30 212 80 02-0 Fax. +49 30 212 80 02-13 email: info@becker-hickl.com https://www.becker-hickl.com

More than 28 years experience in TCSPC. More than 2500 TCSPC systems worldwide.

SPC-180N

TCSPC / FLIM Module

IRF stability

10 ps

over 50 seconds

0.5s per recording

Photon Channel

Principle
Discriminator Input Bandwidth
IRF Width, FWHM
RMS Timing Jitter
Variance in Time of IRF Centroid
Optimum Input Voltage Range
Min. Input Pulse Width

Threshold Zero Cross Adjust

Synchronisation Channel

Principle Discriminator Input Bandwidth Optimal Input Voltage Range Min. Input Pulse Width Threshold Frequency Range

Frequency Range SYNC Frequency Divider Zero Cross Adiust

Time-to-Amplitude Converters / ADCs Principle

TAC Range
Biased Amplifier Gain
Biased Amplifier Offset
Time Range incl. Biased Amplifier
Min. Time / Channel
ADC Principle
Diff. Nonlinearity, Electrical

Data Acquisition (Histogram Modes)

Method
Dead Time
Saturated Count Rate
Useful Count Rate
Max. Counts / Time Channel (Counting Depth)
Overflow Control
Collection Time
Display Interval Time
Repeat Time
Sequential Recording
Synchronisation with Scanning
Routing
Count Enable
Experiment Trigger

Data Acquisition (FIFO / Parameter-Tag Mode)

Method
Online Display
FCS Calculation
Number of Counts of Decay / Waveform Recording
Dead Time
Saturated Count Rate, Peak
Sustained Count Rate (Bus-transfer Limited)
Max. Counts / Time Channel (Counting Depth)
Output Data Format (ADC / Macrotime / Routing)
On-board FIFO Buffer Capacity (Photons)
Macro Timer Resolution, Internal Clock
Macro Timer Resolution, Clock from SYNC Input
Routing
External Event Markers
Experiment Trigger

Data Acquisition, FIFO Imaging

Synchronisation with Scanner
Detector / Wavelength Channels
Image Resolution, 64-bit SPCM Software
No of Time Channels
No. of Pixels, 1 Detector Channel
No. of Pixels, 16 Detector Channels

Operation Environment

Online Display

Computer / Operating System Bus Connector Total Power Consumption Dimensions Constant Fraction Discriminator (CFD)
4 GHz
< 6.6 ps, FWHM
< 2.5 ps, RMS
<0.4 ps RMS over 100 seconds
-30 mV to -500 mV
200 ps
0 to -500 mV
-100 mV to +100 mV

Constant Fraction Discriminator (CFD)
4 GHz
-30 mV to -500 mV
200 ps
0 to -500 mV
0 to 150 MHz
1 - 2 - 4
-100 mV to +100 mV

Ramp Generator / Biased Amplifier 50 ns to 5 us 1 to 15 0 to 50 % of TAC Range 3.3 ns to 5 us 813 fs 50 ns Flash ADC with Error Correction < 0.5 % RMS, typ. <1 % peak-peak

on-board multi-dimensional hardware histogramming process 80 ns, independent of computer speed

12 MHz 6 MHz 2¹⁶-1 none / stop / repeat and correct

0.1 us to 100,000 s 10 ms to 100,000 s 0.1 us to 100,000 s Unlimited recording by memory swapping

pixel, line and frame clocks from scanning device 7 bit TTL 1 bit TTL TTL

Parameter-tagging of individual photons and continuous writing to disk Decay function, FLIM, FCS, Cross-FCS, PCH, MCS traces Multi-tau algorithm, online calculation and online fit

unlimited 80 ns 12 MHz 5 MHz unlimited 12 / 12 / 4 bit 2·10⁶

25 ns, 12 bit, overflows marked by MTOF entry in data stream 10 ns to 100 ns, 12 bit, overflows marked by MTOF entry in data stream

4 bit TTL 4 bit, TTL TTL SPC-180 N
IR Stability
recorded over 50 sec

Buildup of images from time- and wavelength tagged data up to 8 images in different time and wavelength windows or from different modules via Frame Clock, Line Clock, and Pixel Clock pulses

1 to 16

64 256 1024 4096 4096 x 4096 2048 x 2048 1024 x 1024 512 x 512 1024 x 1024 512 x 512 256 x 256 128 x 128

PC Pentium, multi-core, >8GB RAM, Windows 10, Windows 11
PCI-ex
approx. 12 W from +12V
230 mm x 130 mm x 18 mm

Related Products

SPC-180NX, SPC-180NXX TCSPC Modules, SPC-150N, SPC-150NX, SPC-150NXX TCSPC modules HPM-100 GaAsP and GaAs hybrid detectors, DCC-100PCle detector controller BDL-SMN ps diode lasers, BDS-SM, -SMY, -MM picosecond diode lasers, SPCImage NG data analysis software

Related Literature

W. Becker, The bh TCSPC Handbook, 9th edition (2021). 950 pages, available on https://www.becker-hickl.com. Please contact bh for printed copies. The bh TCSPC Technique, Principles and Applications. Overview brochure, 27 pages. Available on https://www.becker-hickl.com

International Sales Representatives

US: Boston Electronics Corp tcspc@boselec.com www.boselec.com

UK: Photonic Solutions PLC sales@psplc.com www.psplc.com

Japan: **Tokyo Instruments Inc.** sales@tokyoinst.co.jp www.tokyoinst.co.jp

China: **DynaSense Photonics Co. Ltd.** info@dyna-sense.com www.dyna-sense.com