- 完整的激光共焦扫描FLIM系统,包括显微镜和激光器
- 现有传统显微镜的共焦 FLIM 升级
- 由两个BDS-SMps 二极管激光器激发
- 激发波长为 375 纳米至 785 纳米
- 通过快速振镜扫描
- 两个共焦检测通道
- 抑制散射和杂光
- 通过二向色或偏振分光镜进行通道分离
- 可单独选择的针孔和滤光片
- 通过bh 的多维 TCSPC 流程进行记录
- 两个完全并行的 TCSPC FLIM 通道
- 时间通道宽度低至 405 fs
- 超快、超灵敏探测器
- 前所未有的时间分辨率
- 检测寿命小于 25 ps
- 接近理想的光子效率
- 卓越的寿命再现性
- 快速在线 FLIM
- 百万像素 FLIM,2048 x 2048 像素
- 精密 FLIM,4096 个时间通道
- 马赛克 FLIM、Z-堆栈 FLIM
- 快速时间序列累积
- 激发波长复用
- 多波长 FLIM
- 同步 FLIM / PLIM
- 集成式电动样品台
- 通过 bhSPCImage NG进行数据分析
- GPU 超快速处理
- 时域分析与相位图相结合
- 通过相位图或二维直方图进行图像分割
- 衰变数据的 MLE(最大似然估计)拟合
- 自动 IRF 建模
- 无需记录 IRF
说明
DCS-120 共焦 FLIM 系统采用ps 二极管激光器激发、振镜快速扫描、共焦检测和bh 的多维 TCSPC 技术进行 FLIM。它以前所未有的时间分辨率、前所未有的重现性、高空间分辨率、高灵敏度和接近理想的光子效率记录荧光寿命图像。荧光寿命可检测到 25 ps;衰变数据可解析为 4096 个时间通道,宽度可达 405 fs。像素格式可增至 2048 x 2048。
DCS-120 系统可用于尼康、蔡司和奥林巴斯的倒置显微镜。它还可用于将现有的传统显微镜转换为带有 TCSPC 检测功能的全功能共聚焦或多光子激光扫描显微镜。由于其光束扫描速度快、灵敏度高,DCS-120 系统可用于活细胞成像。
DCS-120 的功能包括在两个完全平行的波长通道中同时记录 FLIM 或稳态荧光图像、激光波长复用、多波长 FLIM、时间序列 FLIM、通过时间马赛克 FLIM 进行超快速时间序列记录、空间马赛克 FLIM、Z-Stack FLIM、磷光寿命成像(PLIM)、荧光寿命瞬时扫描(FLITS)和 FCS 记录。应用重点是代谢成像,即利用荧光团与其分子环境相互作用所产生的寿命变化。典型应用包括离子浓度测量、FRET 实验、代谢成像、快速生理效应成像和植物生理学。
数据分析由 bh 最新的SPCImage NG FLIM分析软件执行。SPCImage NG 是时域分析和相位分析的结合。通过在 GPU(图形处理器)上运行计算,几秒钟内就能得到结果。其他功能还包括通过相位图或二维时域直方图进行图像分割,以及系统 IRF 自动建模。因此,无需通过记录实际 IRF 进行重复校准。
规格
选定规格 |
||
原理 |
快速振镜激光扫描、去扫描共焦检测 (DC) 和 bh 的多维 TCSPC FLIM 技术 |
|
激发 |
ps脉冲激光器,光纤耦合 |
|
扫描速率、像素停留时间 |
低至约 1 μs/pixel |
|
一般操作模式 |
TCSPC FLIM:
|
|
扫描头 |
||
光学原理 |
快速振镜激光扫描 |
|
激光输入 |
两个独立输入,光纤耦合 |
|
光学激光功率控制 |
连续 ND 滤光片轮控制 |
|
激光输入要求 |
准直自由光束,或配有直径为 12 毫米准直器的光纤耦合光束。光束直径 1 至 2 毫米 |
|
激光功率调节,光学 |
通过中性密度滤光片轮连续可变 |
|
探测器输出 |
两个输出,探测器直接连接 |
|
主要分光镜型号 |
无需对准的可交换式分色镜:提供长通、多波段、宽波段和多光子选项 |
|
二级分光镜轮 |
三个二向色分光镜,偏振分光镜,100% 到通道 1,100% 到通道 2 |
|
针孔 |
每个通道都有独立的针孔轮 |
|
针孔对准 |
电子,通过压电微动平台 |
|
针孔尺寸 |
11 个针孔,从约 0.5 到 10 AU |
|
发射滤波器 |
每个通道串联两个滤光片滑块 |
|
与显微镜连接 |
连接显微镜左侧端口或顶部端口的适配器 |
|
扫描控制 |
||
原理 |
硬件控制精确激光扫描,快速回扫实现快速采集 |
|
帧尺寸 |
帧扫描 16 x 16 至 4096 x 4096 像素,行扫描 16 至 4096 像素 |
|
X 扫描 |
连续扫描或逐个像素扫描、 |
|
Y 扫描 |
逐行扫描 |
|
电子激光功率控制 |
软件控制带有模拟调制输入的激光器 |
|
激光多路复用 |
帧、行、像素和像素内。需要软件控制激光功率。 |
|
光束消隐 |
回扫期间和扫描停止时。需要软件控制激光功率。 |
|
帧频/扫描速度 |
自动选择最快速率或手动选择 |
|
扫描区域定义 |
交互式扫描区域选择、硬件缩放 + 偏移。 |
|
快速预览功能 |
是 |
|
光束驻留功能 |
是,交互式测量点选择。 |
|
TCSPC 系统 |
||
TCSPC / FLIM 模块 |
SPC-180NX |
SPC-QC-104 |
并行 TCSPC / FLIM 通道数 |
典型值2,最多4 |
典型值2,最多3 |
电气时间分辨率 |
1.6 ps RMS / 3.5 ps FWHM |
16 ps RMS / <39 ps FWHM |
定时精度 / |
1.1 ps |
11 ps |
最小时间通道宽度 |
405 fs |
4 ps |
饱和计数率 |
12 MHz |
40 MHz,活动通道共享。 |
激光复用同步 |
最多 4 个激光波长 |
|
记录多波长数据 |
通过路由功能在 16 个通道中同时进行 |
|
实验触发功能 |
TTL,用于 Z-Stack FLIM 和显微镜控制的时间序列 |
|
TCSPC 系统的操作模式 |
|
|
软件 |
||
数据采集软件 |
bh SPCM、用于集成外部设备的 bh LabVIEW |
|
扫描仪控制软件 |
集成在 SPCM 中,bh LabVIEW 用于集成外部设备 |
|
操作系统 |
Windows 10 / 11 64 位 |
|
数据分析软件 |
bh SPCImage NG |
|
数据分析原理 |
MLE 拟合(GPU 辅助处理) |
|
函数模型 |
|
|
IRF 建模 |
拟合衰变数据的合成 IRF 函数、从数据中自动提取 IRF 或测量 IRF |
|
激发源 |
||
共焦 FLIM |
1 至 4 ps 二极管激光器 |
|
可用波长 |
375 纳米至 785 纳米 |
|
重复率 |
20、50、80 MHz 和连续波 |
|
脉冲宽度 |
40 ps 至 100 ps |
|
可选项 |
多光子 FLIM、自由光束或光纤耦合飞秒脉冲激光器、单一波长或可调波长 |
|
探测器 |
||
共焦检测器 |
直接耦合到扫描头 |
|
可选 |
NDD 探测器,直接耦合到显微镜后端口 |
|
标准探测器 |
HPM-100-40 混合探测器,带 GaAsP 阴极,250 至 720 nm,最适合与 ns 寿命染料一起使用 |
|
可选项 |
HPM-100-06 检测器,FWHM IRF 宽度 <20 ps,波长 220 至 650 nm,最适合用于 ps 寿命的自发荧光研究 |
|
可选 |
HPM-100-50 检测器,波长 400 至 900 nm,最适合长波长荧光研究 |
|
可选 |
MW-FLIM GaAsP 多波长探测器 |
有关完整规格,请参阅
下载
文件
bh FLIM 系统的应用领域是分子成像。典型的应用包括离子浓度、pH 值或局部粘度成像,通过 FRET 进行蛋白质相互作用实验,以及通过 NADH 和 FAD 的荧光衰减结合氧气测量进行代谢成像。在这些应用中,bh FLIM 系统具有高灵敏度、高时间分辨率、高定时稳定性,并能将多指数衰减曲线分解为各个组成部分。其他优势还包括能够记录毫秒级的快速生理效应 FLIM,以及同时记录多个激发和发射波长。
应用
- Metabolic Imaging by FLIM
- FLIM of Fast Physiological Effects
- Molecular Imaging by FLIM
- FRET Imaging by FLIM
- Simultaneous Metabolic Imaging and pO2 Imaging
- Personalized Chemotherapy
- Fluorescence Correlation – FCS
- Antibunching Experiments by TCSPC
- TCSPC FLIM
- Multi-Wavelength FLIM
- Simultaneous FLIM / PLIM
- Fluorescence Cross Correlation – FCCS
应用说明
- Recording Z Scans with the DCS-120 Confocal Scanning FLIM System
- An 8-Channel Parallel Multispectral TCSPC FLIM System
- Microsecond Decay FLIM: Combined Fluorescence and Phosphorescence Lifetime Imaging
- DCS-120 Confocal FLIM System with Wideband Beamsplitter
- Spatially Resolved Recording of Fluorescence-Lifetime Transients by Line- Scanning TCSPC
- DCS-120 Confocal Scanning System: FLIM with NIR Dyes
- Mosaic FLIM: New Dimensions in Fluorescence Lifetime Imaging
- Simultaneous Phosphorescence and Fluorescence Lifetime Imaging by Multi-Dimensional TCSPC and Multi-Pulse Excitation
- DCS-120 FLIM System Records X-Y Mosaics
- Metabolic Imaging with the DCS-120 Confocal FLIM System: Simultaneous FLIM of NAD(P)H and FAD
- Lifetime-Intensity Mode Delivers Better FLIM Images
- DCS-120 FLIM System Detects FMN in Live Cells
- SPCM Software Runs Online-FLIM at 10 Images per Second
- bh FLIM Systems Record Calcium Transients in Live Neurons
- Megapixel FLIM with bh TCSPC Modules – The New SPCM 64-bit Software
- TCSPC at Wavelengths from 900 nm to 1700 nm
- New SPCImage Version Combines Time-Domain Analysis with Phasor Plot
- Double-Exponential FLIM-FRET Approach is Free of Calibration
- A Common Mistake in Lifetime-Based FRET Measurement
- High Resolution Z-Stack FLIM with the Becker & Hickl DCS-120 Confocal FLIM System
原则
Confocal Scanning
In a conventional fluorescence microscope fluorescence is excited and detected in a double cone throughout the entire depth of the sample, see figure below. The sharp image seen in the focal plane is therefore surrounded by out-of-focus haze from above and below the focal plane. For structural imaging of single cells this may still be acceptable. For FLIM, however, even a small amount of out-of focus blur is unacceptable because it adds unwanted decay components to the fluorescence decay in the focal plane. For FLIM of thick tissue the situation becomes entirely hopeless. The out-of-focus blur becomes entirely overwhelming, and results in an almost complete loss in image contrast and a total mixup of decay components.
The solution to the out-of-focus problem is confocal detection. The principle is illustrated in the figure below, left. A laser beam is focused into the sample by the microscope objective lens. Although this beam excites fluorescence through the entire depth of the sample the fluorescence is brightest in the focus of the laser beam. The light from the focus of the laser beam is collected back through the microscope lens, separated from the laser beam by a dichroic mirror, and focused into a pinhole in the upper focal plane of the microscope lens. Only light from the focal plane can pass the pinhole – light from other planes is not focused into the pinhole and, consequently, cannot pass it with any appreciable efficiency.
Scanning
The principle of confocal detection solves the problem of out-of-focus light but, taken by itself, does not provide an image of the sample. To obtain an image of the an object in the focal plane confocal detection has to be combined with scanning. Scanning can be achieved by different techniques, such as moving the sample, moving the objective lens, or deflecting the laser beam and the detection beam by fast moving mirrors. The third option is the only one which is applicable to imaging of biological samples. It is fast, it does not exert mechanical forces to the sample, and it can be used for any object that can be placed under the microscope. Confocal detection in combination with beam scanning is illustrated in the figure below, left and right. The laser beam is deflected by a pair of fast-moving galvanometer mirrors. The scan lens projects the beam down towards the microscope lens. As the mirrors are moving, the beam angle in the plane of the microscope lens changes, and so does the position of the laser focus in the sample plane. The fluorescence goes back through the same beam path. Being reflected at the galvanometer mirrors, it forms a stationary beam of light coincident with the laser beam, see figure below, left. The fluorescence is separated from the laser by a dichroic mirror, and projected into a pinhole in a plane conjugate with the focal plane in the sample. Please see figure below, right.
As explained above, confocal detection in combination with scanning solves the problem of out-of-focus light in a microscope. However, scanning does more than that. It also avoids that light scattered in the sample causes lateral crosstalk between the pixels. Surprisingly, this is rarely mentioned in the microscopy literature. Consider an imaging system that simultaneously illuminates the entire sample and detects an image from the focal plane by a camera. In all pixels of this image the camera will detect scattered light from all other pixels in the illuminated area, see below, left. A scanning system – scanning the sample by a focused laser beam and detecting light only from the excited spot – records only light from the current pixel (right). Even if a part of this light is scattered in the sample the imaging system will assign the scattered photons to the correct pixel.
The supression of laterally scattered light means that already scanning alone – without the help of confocal detection – massively improves the image quality in optically thick samples. An example is shown in the figure below. From left to right, it shows images of a pig skin sample recorded by an ordinary camera, by scanning and detection without a pinhole, and by confocal detection though a pinhole. The camera image (left) shows nothing from inside the sample, the scan image (middle) shows the internal structure, and the confocal image (right) shows the internal structure without out-of-focus haze.
Combination with TCSPC FLIM
The bh FLIM systems use a multi-dimensional TCSPC technique. That means, single photons of the light passing the pinhole are detected, the times of the photons within the excitation pulse period and the position of the laser beam in the moment of the photon detection are determined, and a photon distribution over these parameters is build up. The result is an array of pixels, each containing photon numbers in a large number of consecutive time channels. Please see figure below.
The TCSPC-FLIM recording process works at any scan rate, achieves a near-ideal photon efficiency, delivers a beautifully resolved decay function in every pixel, and reaches an extremely high time resolution. The signal-to-noise ratio depends only on the photon rate available from the sample and the total acquisition time. By adding additional dimensions to the photon distribution, multi-wavelength FLIM images, multi-excitation-wavelength images, combined fluorescence / phosphorescence image, and images of fast physiological effects in the sample can be accumulated. As all bh FLIM systems, the DCS-120 TCSPC system has two parallel TCSPC channels detecting in different wavelength intervals or under different angle of polarisation.
Please see The bh TCSPC Handbook and Handbook of the DCS-120 Confocal and Multiphoton FLIM Systems for details.